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1. Introduction

How to deal with the IR behaviour of QCD ? There are three main types of approach:

• Dyson Schwinger equations (DSE) and especially the untruncated one concerning the

ghost propagator.

• Ward-Slavnov-Taylor identities (WSTI)

• Lattice QCD simulations (LQCD).

Until a few years ago, there was a clear contradiction between the standard DSE

solution and LQCD results. If we call F (q2) (G(q2)) the ghost (gluon) dressing function,

the standard DSE solution (later labelled as solution I) predicts that F 2(q2)G(q2) goes

to a non-vanishing constant when q2 → 0 (see for instance [1] and references therein).

LQCD indicates on the contrary in an unambiguous way that F 2(q2)G(q2) → 0 when

q2 → 0 [2, 3]. The standard solution implies [4] also that G(q2)/q2 does not diverge when

q2 → 0 while F (q2) diverges at least as fast as (q2)− 1/2. Regarding lattice QCD results,

they have long been compatible with an IR-diverging F (q2), although definitely at a much

slower pace. This discrepancy has been tentatively charged to different types of lattice

– 1 –



J
H
E
P
0
6
(
2
0
0
8
)
0
9
9

artifacts. However more recent LQCD data obtained in large volume simulations [5, 6]

show that under those conditions the ghost dressing function IR exponent αF (assuming

F (q2) ≃

q2→0
(q2)αF ) lies in the vicinity of 0.

Now, it was proven in [3, 7, 8] that:

• there exists a second class of solutions to the DSE (later labelled as solution II)

which implies that F (q2) goes to a non-vanishing constant when q2 → 0 and does

not constrain F 2(q2)G(q2).

• the WSTI implies under very plausible assumptions that F (q2) goes to a non-

vanishing constant when q2 → 0, which imposes the solution II of DSE.

Thus, the convergence of the three methods towards a finite non-vanishing ghost

dressing function is very impressive.

Furthermore, a recent numerical study of the DSE using the LQCD gluon input finds

that both cases of solutions (I and II) are found depending on the strong coupling constant

which is a free parameter in this exercise [9]. Solutions exist when the coupling constant

is smaller than (or equal to) a critical value. In the general case the solutions which come

out belong to type II, but for the critical coupling constant one finds the solution I. It was

also proved that for an appropriate coupling constant the resulting ghost dressing function

(belonging to class II) fits very well with lattice results.

Concerning the gluon propagator the analytic methods are not so constraining. WSTI,

under a regularity hypothesis for the longitudinal-longitudinal-transverse gluon vertex func-

tion, predicts a divergent gluon propagator when q2 → 0 [3, 10] while LQCD seems to point

towards a finite non-vanishing gluon propagator at q2 = 0 (see, for instance, [11]). A very

slow divergence of the gluon propagator, not easy to see in LQCD, might solve this dis-

crepancy.

In this paper we wish to present an analytic study of the ghost propagators of both

solutions I and II in the deep infrared in the context of the DSE. We also will carefully

scrutinize the relationship between DSE, WSTI and LQCD solutions. In section 2, the

ghost propagator DSE is properly renormalised and analysed in the deep IR regime. The

two types of solutions are obtained in section 3 and their implications put clearly on the

table. In section 4, we discuss what WSTI tells us and section 5 is devoted to briefly review

the LQCD results for the ghost propagator. We conclude in section 6. In appendix A we

show how the ghost propagator DSE that we exploit in the next section can be generally

inferred from WSTI.

2. The ghost propagator Dyson-Schwinger equation

We will examine the Dyson-Schwinger equation for the ghost propagator (GPDSE) which
can be written diagrammatically as




a bk




−1

=




a bk




−1

−

a,k

d,ν

e

f,µ

c,q b,k

q-k

(2.1)
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i.e., denoting by F (2) (resp. G(2)) the full ghost (resp. gluon) propagator,

(F (2))−1
ab (k) = −δabk

2 − (2.2)

−g2
0facdfebf

∫
d4q

(2π4)
F (2)

ce (q)(iqν′)Γ̃ν′ν(−q, k; q − k)(ikµ)(G(2))fd
µν(q − k),

where Γ̃ stands for the bare ghost-gluon vertex,

Γ̃abc
ν (−q, k; q − k) = ig0f

abcqν′Γ̃ν′ν(−q, k; q − k)

= ig0f
abc (qνH1(q, k) + (q − k)νH2(q, k)) , (2.3)

where q and k are respectively the outgoing and incoming ghost momenta and g0 is the bare

coupling constant. Let us now consider eq. (2.2) at small momenta k. After applying the

decomposition for the ghost-gluon vertex in eq. (2.3), omitting colour indices and dividing

both sides by k2, it reads

1

F (k2)
= 1 + g2

0Nc

∫
d4q

(2π)4


F (q2)G((q − k)2)

q2(q − k)4

[
(k · q)2

k2
− q2

]
H1(q, k)


 . (2.4)

It should be noticed that, because of the transversality condition, H2 defined in eq. (2.3)

does not contribute for the GPDSE in the Landau gauge.

2.1 Renormalization of the Dyson-Schwinger equation

The integral equation eq. (2.4) is written in terms of bare Green functions. It is

actually meaningless unless one specifies some appropriate UV-cutoff,1 Λ, and performs

the replacements F (k2) → F (k2,Λ) . . . . It can be cast into a renormalized form by

dealing properly with UV divergencies, i.e.

g2
R(µ2) = Z−2

g (µ2,Λ)g2
0(Λ)

GR(k2, µ2) = Z−1
3 (µ2,Λ)G(k2,Λ)

FR(k2, µ2) = Z̃−1
3 (µ2,Λ)F (k2,Λ), (2.5)

where µ2 is the renormalization momentum and Zg, Z3 and Z̃3 the renormalization con-

stants for the coupling constant, the gluon and the ghost respectively. Zg is related

to the ghost-gluon vertex renormalization constant (defined by Γ̃R = Z̃1ΓB) through

Zg = Z̃1(Z
1/2
3 Z̃3)

−1. Then Taylor’s well-known non-renormalization theorem, which states

that H1(q, 0)+H2(q, 0) = 1 in Landau gauge and to any perturbative order, can be invoked

to conclude that Z̃1 is finite. We recall that the renormalization point is arbitrary, except

for the special value µ = 0 which cannot be chosen without a loss of generality (see, in this

respect, the discussion in ref [12]). Thus,

1

FR(k2, µ2)
= Z̃3(µ

2,Λ) + NCZ̃1g
2
R(µ2)ΣR(k2, µ2; Λ) (2.6)

1We have written for simplicity the UV cutoff as a hard cut-off. It is preferable to use a gauge in-

variant regularization procedure in view of the advantage of exploiting Ward-Slavnov-Taylor identities (see

section 4). In practice we will derive our results from the subtracted GPDSE which incorporates gauge

invariant UV regularisation.
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where

ΣR(k2, µ2; Λ) =

∫ q2<Λ2
d4q

(2π)4
(2.7)

×

(
FR(q2, µ2)GR((q − k)2, µ2)

q2(q − k)4

[
(k · q)2

k2
− q2

]
H1,R(q, k;µ2)

)
.

One should notice that the UV cut-off, Λ, is still required as an upper integra-

tion bound in eq. (2.7) since the integral is UV-divergent, behaving as
∫

dq2/q2(1 +

11αS/(2π) log (q/µ)))−35/44. In fact, the cut-off dependence this induces in ΣR cancels2

against the one of Z̃3 in the r.h.s. of eq. (2.6), in accordance with the fact that the l.h.s.

does not depend on Λ.

Now, we will apply a MOM renormalization prescription. This means that all the

Green functions take their tree-level value at the renormalization point and thus:

FR(µ2, µ2) = GR(µ2, µ2) = 1. (2.8)

In the following, H1(q, k) will be approximated by a constant3 with respect to both mo-

menta and, provided that H1(q, 0) = 1 at tree-level, our MOM prescription implies that

H1,R(k, q;µ2) = 1 and Z̃1 is a constant in terms of µ.

2.2 A subtracted Dyson-Schwinger equation

The renormalized GPDSE, eq. (2.6), should be carefully analysed. We aim to study the in-

frared behaviour of its solutions and therefore focus our analysis on the momentum region,

k ≪ ΛQCD, where the IR behaviour of the dressing functions (presumably in powers of the

momentum) is supposed to hold. One cannot forget, though, that the UV cut-off depen-

dences in both sides of eq. (2.6) match only in virtue of the previously mentionned relation

between the ghost and gluon propagator anomalous dimension and the beta function.

However, in order not to have to deal with the UV cut-off, we prefer to approach

the study of the GPDSE in the following manner: we consider eq. (2.6) for two different

scales, λk and λκk (with κ < 1 some fixed number and λ an extra parameter that we shall

ultimately let go to 0) and subtract them

1

FR(λ2k2, µ2)
−

1

FR(λ2κ2k2, µ2)
= NCg2

R(µ2)Z̃1

(
ΣR(λ2k2, µ2;∞)−ΣR(λ2κ2k2, µ2;∞)

)
.

(2.9)

2One can easily check that eZ−1
3 (µ2, Λ)ΣR(k2, µ2; Λ) approaches some finite limit as Λ → ∞ since the

ghost and gluon propagator anomalous dimensions and the beta function verify the relation 2eγ +γ +β = 0.
3This approximation is very usually used to solve GPDSE. Notice that few lattice data are available for

the ghost-gluon vertex. However, in a recent computation [2] of that vertex for a zero gluon momentum,

H1(q, q) appears to be approximatively constant with respect to q. Of course, more data for different

kinematical configurations should be welcome to check that approximation.
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Then the integral in the r.h.s. is UV-safe, thanks to the subtraction, and the limit Λ → ∞

can be explicitely taken,

ΣR(λ2k2, µ2;∞) − ΣR(λ2κ2k2, µ2;∞) =

∫
d4q

(2π)4

(
F (q2, µ2)

q2

(
(k · q)2

k2
− q2

)

×

[
G((q − λk)2, µ2)

(q − λk)4
− (λ → λκ)

])
. (2.10)

An accurate analysis of eq. (2.9) requires, in addition, to cut the integration domain of

eq. (2.10) into two pieces by introducing some new scale q2
0 (q0, typically of the order of

ΛQCD, is a momentum scale below which the deep IR power behaviour is a good approxi-

mation),

ΣR(λ2k2, µ2;∞) − ΣR(λ2κ2k2, µ2;∞) = IIR(λ) + IUV(λ) (2.11)

where IIR represents the integral in eq. (2.10) over q2 < q2
0 and IUV over q2 > q2

0. Only the

dependence on λ is written explicitly because we shall let it go to zero with k, κ and µ2

kept fixed. The relevance of the q2
0 scale stems from the drastic difference between the IR

and UV behaviours of the integrand. In particular, for (λk)2 ≪ q2
0, the following infrared

power laws,

FIR(q2, µ2) = A(µ2)
(
q2

)αF

GIR((q − λk)2, µ2) = B(µ2)
(
(q − λk)2

)αG , (2.12)

will be applied for both dressing functions in IIR.

Now, IIR is infrared convergent if:

αF > −2 IR convergence at q2 = 0

αG > 0 IR convergence at (q − k)2 = 0 and (q − κk)2 = 0 (2.13)

We shall suppose in the following that these conditions are verified. Let us first consider

IUV. Its dependence on λ, which is explicit in the factor inside the square bracket of

eq. (2.10), should clearly be even in λ: any odd power of λ would imply an odd power

of q · k whose angular integral is zero. Since the integrand is identically zero at λ = 0

and the integral is ultraviolet convergent, it is proportional to λ2 (unless some accidental

cancellation forces it to behave as an even higher power of λ). On the other hand, after

performing the change of variable q → λq, the IR contribution of the integral in eq. (2.10)’s

r.h.s can be rewritten as:

IIR(λ) ≃
(
λ2

)(αF +αG)
A(µ2)B(µ2)

∫ q2<
q20
λ2 d4q

(2π)4
(q2)αF−1

(
(k · q)2

k2
− q2

)

×
[(

(q − k)2
)αG−2

−
(
(q − κk)2

)αG−2
]
, (2.14)

that, as it shall be seen in the next subsection, asymptotically behaves as

IIR(λ) ∼





λ2(αG+αF ) if αG + αF < 1

λ2 ln λ if αG + αF = 1

λ2 if αG + αF > 1.

(2.15)
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Thus, in all the cases, the leading behaviour of IIR + IUV, as λ vanishes, is given by IIR in

eq. (2.15). The subtracted renormalised GPDSE reads for αG + αF ≤ 1 as:

1

FR(λ2k2, µ2)
−

1

FR(λ2κ2k2, µ2)
≃ NCg2

R(µ2)Z̃1IIR(λ), (2.16)

for small λ. We have assumed that H1 is constant when varying all the momenta

but (2.15), (2.16) remain true if one only assumes that H1 behaves “regularly” for

q2, k2 ≤ q2
0 (i.e. is free of singularities or, at least, of any singularity worse than loga-

rithmic).

2.3 The ghost-loop integral

The present section is devoted to the quantitative analysis of the integral IIR(λ), defined

in eq. (2.14), which gives the contribution of the ghost loop to the renormalised GPDSE

eq. (2.16). If αF + αG < 1 it is possible to perform analytically the integral and to find a

compact expression for it. In this case, one can write

IIR(λ) ≃ A(µ2)B(µ2)
(
λ2

)(αF +αG)
(Φ(k;αF , αG) − Φ(κk;αF , αG)) (2.17)

where A(µ2) and B(µ2) were defined in eq. (2.12) and

Φ(k;αF , αG) =

∫
d4q

(2π)4
(q2)αF −1

(
(q − k)2

)αG−2
(

(k · q)2

k2
− q2

)
, (2.18)

provided that Φ(k;αF , αG) is not singular to let the subtraction inside the bracket and the

integral operator in eq. (2.17) commute with each other. Then, following [13], we define

f(a, b) =
16π2

(k2)2+a+b

∫
d4q

(2π)4
(q2)a

(
(q − k)2

)b

=
Γ(2 + a)Γ(2 + b)Γ(−a − b − 2)

Γ(−a)Γ(−b)Γ(4 + a + b)
, (2.19)

and obtain

Φ(k;αF , αG) =
(k2)αF +αG

16π2
φ(αF , αG) (2.20)

where

φ(αF , αG) = −
1

2
(f(αF , αG − 2) + f(αF , αG − 1) + f(αF − 1, αG − 1))

+
1

4
(f(αF − 1, αG − 2) + f(αF − 1, αG) + f(αF + 1, αG − 2)) . (2.21)

Thus, if αF + αG < 1,

IIR(λ) ≃
A(µ2)B(µ2)

16π2
(λ2k2)αF +αG(1 − κ2(αF +αG))φ(αF , αG). (2.22)
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We will now compute the leading asymptotic behavior of IIR as λ → 0 when

αF + αG = 1. In this case, after performing in eq. (2.14) the following expansion,

[
(k − q)2

]αG−2
−

[
(κk − q)2

]αG−2
≃ (q2)αG−2(αG − 2)(1 − κ) (2.23)

×

[
−2

q · k

q2
+ (1 + κ)

(
k2

q2
+ 2(αG − 3)

(q · k)2

q4

)]
;

and neglecting the term odd in qµ → −qµ; one finds for the leading contribution

IIR(λ) ≃ −k2(1 − κ2)
2A(µ2)B(µ2)

(2π)3
λ2

∫ q0/λ

dqq2(αF +αG)−3

×

∫ π

0
dθsin4θ

(
αG − 2 + 2(αG − 3)(αG − 2)cos2θ

)

≃ k2(1 − κ2)
A(µ2)B(µ2)

32π2
αG(αG − 2)λ2 ln λ. (2.24)

We do not specify the lower bound of the integral over q in eq. (2.24) because it necessarily

contributes as a subleading term, once the ghost-loop integral is required to be IR safe.

Then, as we advanced in eq. (2.15), IIR/λ2 diverges logarithmically as λ goes to zero if

αF +αG = 1. In fact, since eq. (2.22) is a reliable result for any αF +αG < 1 however close

it may be to 1, such a divergence appears as a pole of a Gamma function of φ(αF , αG) in

eq. (2.20).

Finally, if αF + αG > 1, the leading contribution for IIR(λ) as λ vanishes can be

computed after performing back the change of integration variable, q → q/λ, in eq. (2.14).

The first even term in eq. (2.23) dominates again the expansion after integration, but now

it does not diverge. Then, if we procceed as we did in eq. (2.24), we obtain

IIR(λ) ≃ −
αG(αG − 2)

αF + αG − 1

(q2
0)

αF +αG−1

64π2
A(µ2)B(µ2)k2λ2(1 − κ2), (2.25)

for small λ and αG + αF > 1. It should be noticed that IIR in eq. (2.25) depends on the

additional scale q0 introduced in eq. (2.11) to separate IR and UV integration domains.

In fact, if one takes q0 → ∞, IIR diverges. This means that, when αF + αG > 1, the

behaviour of the IR power laws hampers their use for all momenta in the integral. The

finiteness of the ghost-loop integral of the subtracted GPDSE can only be recovered after

taking into account the UV logarithmic behaviour for large-momenta dressing functions.4

Furthermore, IUV, also behaving as λ2, should be also added in r.h.s. of eq. (2.16) in order

to write the renormalised GPDSE. Thus, the dependence on λ but not the factor in front

of it can be inferred from the GPDSE with only the information of the asymptotics for

small-momentum dressing functions.

4The scale q0 being of the order of ΛQCD, power laws for αF + αG > 1 cannot be then solutions of the

GPDSE in the MR truncation scheme corresponding to ΛQCD → ∞ (see, for instance, [13]). The same

argument holds also for αF + αG = 1, because the ghost-loop integral in eq. (2.24) diverges as λ → 0 for

any q0 fixed as well as for q0 → ∞ for any fixed λ.

– 7 –
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3. The infrared analysis of GPDSE solutions

The starting point for the infrared analysis will be the eq. (2.16) for small λ, where we will

try to make the dependences on k, κ and λ of the two sides match each other.

3.1 The case αF 6= 0 (solution I)

We will first study the case αF 6= 0. Then, the l.h.s. of eq. (2.16) can be expanded for

small λ as

1

FR(λ2k2, µ2)
−

1

FR(λ2κ2k2, µ2)
≃

(
1 − κ−2αF

) (
λ2k2

)
−αF

A(µ2)
(3.1)

and we will obtain from eq. (2.16):

NCg2
R(µ2)Z̃1A(µ2)

IIR(λ)

(1 − κ−2αF ) (λ2k2)−αF
≃ 1, (3.2)

where the dependences on k, κ and λ of the numerator and the denominator should cancel

against each other. Using for IIR the form given in eq. (2.15), we find three possible

situations:

• If αG + αF > 1, applying eq. (2.25) in eq. (3.2), we are led to the conclusion that

only αF = −1 (and αG > 2) satisfies this last equation and could be an IR solution

for GPDSE. However, such a solution appears to be in a clearcut contradiction with

the current lattice simulations.

• If αG + αF = 1, there is no possible solution because the logarithmic behaviour of

IIR in eq. (2.24) cannot be compensated by the powerlike one in the denominator of

eq. (3.2).

• If αG + αF < 1, eq. (2.22) combined with eq. (3.2) implies the familiar relation

2αF + αG = 0 and we have then:

NCg2
R(µ2)Z̃1

(A(µ2))2B(µ2)

16π2
φ

(
−

αG

2
, αG

)
≃ 1, (3.3)

An immediate consequence of this last condition is the freezing of the running coupling

constant at small momentum. If the renormalization point, µ, is arbitrarily chosen to be

very small in order that the dressing functions observe the power laws at k2 = µ2, one

obtains A(µ2) = µ−2αF and B(µ2) = µ−2αG . Eq. (3.3) then reads

NCg2
R(µ2)Z̃1φ

(
−

αG

2
, αG

)
≃ 16π2, (3.4)

and should be satisfied for any small value of µ. Consequently, it should remain exact as

µ → 0 and provides the small-momentum limit of the running coupling (which is indepen-

dent of the infrared constants for ghost and gluon dressing functions).

In particular, if αG = 1, one has φ(−1/2, 1) = 8/5 and thus

NCg2
R(µ2)Z̃1 ≃ 10π2, (3.5)

– 8 –
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3.2 The case αF = 0 (solution II)

The case αF = 0 is particular in that the leading contributions to the two occurrences of

F in the l.h.s of eq. (2.16) cancel against each other. We have then to go one step further,

taking into account the subleading terms. Defining F̃IR by means of FIR(q2, µ2) = A(µ2)+

F̃IR(q2, µ2) we rewrite the l.h.s of eq. (2.9) as −(F̃IR(λ2k2, µ2) − F̃IR(λ2κ2k2, µ2))/A2(µ2)

and use the known IR behaviour of IIR(λ) from eq. (2.15)) in the r.h.s. of eq. (2.16) to get

FIR(q2, µ2) =

{
A(µ2) + A2(µ

2)q2 ln q2 if αG = 1

A(µ2) + A2(µ
2)(q2)α

(2)
F otherwise.

(3.6)

Furthermore, not only the subleading functional behaviour of the dressing function can be

constrained but also the coefficient A2 in eq. (3.6). In fact, if we plug this equation into

the l.h.s. of eq. (2.16) and expand we obtain:

−
(A(µ2))2

A2(µ2)
NCg2

R(µ2)Z̃1 IIR(λ) ≃

{
k2(1 − κ2)λ2 ln λ2 if αG = 1

(λ2k2)α
(2)
F (1 − κ2α

(2)
F ) otherwise,

(3.7)

Let us consider now in more detail the three possible cases.

• If αG < 1, we obtain from eqs. (2.22), (3.7) that α
(2)
F = αG. Then,

−
(A(µ2))3B(µ2)

A2(µ2)
NCg2

R(µ2)Z̃1 φ(0, αG) ≃ 16π2, (3.8)

where, according to eqs. (2.19), (2.21) φ(0, αG) is given by

φ(0, αG) =
3

2αG(αG + 1)(αG + 2)(1 − αG)
(3.9)

• Similarly if αG = 1, eq. (2.24) applied to eq. (3.7) leads to

(A(µ2))3B(µ2)

A2(µ2)
NCg2

R(µ2)Z̃1 ≃ 64π2. (3.10)

• At last, if αG > 1, eqs. (2.25) and (3.7) imply: α
(2)
F = 1. i.e., a ghost dressing function

which behaves quadratically for small momenta, In this case, however, as already

said the ghost loop cannot be evaluated using the IR power laws over the whole

integration range and it is therefore not possible to solve the GPDSE consistently, nor

even to determine the small-momentum behaviour of the dressing functions, without

matching appropriately those power laws to the UV perturbative formulas. Thus, we

are not able to derive a constraint for the next-to-leading coefficient, A2(µ
2).

In summary, the GPDSE admits IR solutions with αF = 0 and any αG > 0, provided

that

FIR(q2, µ2) =





A(µ2)

(
1 − φ(0, αG)

g̃2(µ2)

16π2
A2(µ2)B(µ2)(q2)αG

)
αG < 1

A(µ2)

(
1 +

g̃2(µ2)

64π2
A2(µ2)B(µ2)q2 ln q2

)
αG = 1

A(µ2) + A2(µ
2)q2 αG > 1

(3.11)
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where g̃2(µ2) = NCg2
R(µ2)Z̃1 and φ(0, αG) is given in eq. (3.9). The gluon dressing function

is supposed to behave as indicated in eq. (2.12). In particular for αG = 1, the gluon

propagator takes a finite (and non-zero) value at zero momentum, B(µ2), after applying

MOM renormalisation prescription at q2 = µ2.

4. The ghost-gluon and three-gluon Ward-Slavnov-Taylor identity

In the previous section, we have analysed the infrared behaviour of GPDSE solutions

and found that the ghost dressing function can either diverge at vanishing momentum

(αF = −αG/2 with αG > 0) or give a finite value (αF = 0 with any αG > 0). As

appendix A shows, the GPDSE can be derived from the general Ward-Slavnov-Taylor

equation [14]. The Ward-Slavnov-Taylor identities (WSTI) can be derived formally from

the gauge invariance of the path integral, eq. (A.1) of A, as shown in [15]. This is the

case in lattice simulations. If the path integral is limited to a domain of the configuration

space such as in the Gribov-Zwanziger approach, used in [16], the STI may be broken. We

assume a gauge invariant path integral and will now invoke the WSTI for general covariant

gauges relating the 3-gluon, Γλµν(p, q, r), and ghost-gluon vertices,

pλΓλµν(p, q, r) =
F (p2)

G(r2)
(δρνr2 − rρrν)Γ̃ρµ(r, p; q)

−
F (p2)

G(q2)
(δρµq2 − qρqµ)Γ̃ρν(q, p; r).

(4.1)

to shed some light on that matter [10, 17]. Using for the ghost-gluon vertex the general

decomposition5 [18]

Γ̃νµ(p, q; r) = δνµa(p, q; r) − rνqµb(p, q; r) + pνrµc(p, q; r)

+rνpµd(p, q; r) + pνpµe(p, q; r), (4.2)

and multiplying by rν both sides of eq. (4.1), one obtains:

rνpλΓλµν(p, q, r) =
F (p2)

G(q2)
X(q, p; r)

[
(q · r)qµ − q2rµ

]
; (4.3)

where

X(q, p; r) = a(q, p; r) − (r · p)b(q, p; r) + (r · q)d(q, p; r). (4.4)

Since the vertex function, Γ, in the l.h.s. of eq. (4.3) is antisymmetric under p ↔ r and

λ ↔ ν, one can then conclude that [10, 19]:

F (p2)X(q, p; r) = F (r2)X(q, r; p). (4.5)

This last result is a compatibility condition required for the WSTI to be satisfied that

does not involve the 3-gluon vertex and implies a strong correlation between the infrared

5We work of course on the energy-momentum shell, so that the relation p + q + r ≡ 0 holds
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behaviours of the ghost-gluon vertex and the ghost propagator. Now, under the only

additional hypothesis that those scalars of the ghost-gluon vertex decomposition in eq. (4.2)

contributing to the scalar function X defined in eq. (4.4) are regular6 when one of their

arguments goes to zero while the others are kept non-vanishing, one can consider the small

p limit in eq. (4.5) and obtain:

F (p2)X(q, 0;−q) = F (q2)X(q,−q; 0) + O(p2) (4.6)

This has to be true for any value of q, which implies F (p2) goes to some finite and

non-zero value when p goes to zero, since neither X(q, 0;−q) nor X(q,−q; 0) are

presumably zero for all values of q. Rephrased in terms of infrared exponents, the latter

argument implies that αF = 0.

To reach the above conclusions we did not appeal to the properties of the 3-gluon ver-

tex, apart from the symmetry under the exchange of gluon legs. If one assumes in addition

that the longitudinal part of the 3-gluon vertex also behaves regularly when anyone of its

arguments goes to 0, the others being kept non-vanishing, a divergent gluon propagator at

vanishing momentum will be implied [3, 8, 10]. Of course, as far as it involves a vertex

with longitudinal gluons which have not been very extensively studied, this last conclusion

is not as clean as the previous one about the ghost dressing (according to authors of ref. [4]

a soft kinematical singularity appears for the landau-gauge 3-gluon vertex, however it does

not concern our proof relying on the regularity of the longitudinal-longitudinal-transverse

3-gluon vertex).

In ref. [10], we showed that only a very mild divergence, for example of logarithmic type,

could be compatible with current LQCD results for the gluon propagator. The IR analysis

of the previous section can be straightforwardly extended to this case by generalizing

GIR(q2, µ2) = B(µ2)
(
q2

)αG logν

(
1

q2

)
, (4.7)

the effect of which is to modify eq. (3.11) with

FIR(q2, µ2) =





A(µ2)

(
1−φ(0, αG)

g̃2(µ2)

16π2
A2(µ2)B(µ2)(q2)αG logν (q−2)

)
αG <1

A(µ2)

(
1−

g̃2(µ2)

(ν + 1)64π2
A2(µ2)B(µ2)q2 log(ν+1) (q−2)

)
αG =1

A(µ2) + A2(µ
2)q2 logν (q−2) αG >1

(4.8)

where only the power of the logarithm is then modified.

Sticking now to the case where αF is zero (for the reasons explained above) and αG is

1 (as suggested by the lattice results) we are left with

FIR(q2, µ2) = FIR(0, µ2)

(
1 −

g̃2(µ2)

(ν + 1)64π2
FIR(0, µ2)2B(µ2)q2 log(ν+1)

(
M2

q2

))
, (4.9)

6Note also that, for our purposes, it will actually be enough to restrict, and not forbid, the possible

presence of singularities in the scalar coefficient functions provided that they could be compensated by

kinematical zeroes stemming from the tensors.
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according to whether there are logarithmic corrections to the gluon propagator (ν 6= 0) or

not (ν = 0). Here, M is some scale which is out of the scope of the IR analysis we performed

in the previous section and, if ν = 0, B(µ2) = G
(2)
IR (0, µ2) is the gluon propagator at zero

momentum.

5. Ghost propagator from LQCD

The theoretical study by Zwanziger [20] of the Faddeev-Popov operator on the lattice in

Landau gauge triggered the first Lattice simulation of the ghost propagator [21] in SU(2)

and SU(3) gauge theories and the subsequent activity which, mainly for technical reasons,

was mostly dedicated to the SU(2) lattice gauge theory in the infrared region. It was

only in the last few years that several studies of the SU(3) ghost propagator focused on

its infrared region and the Gribov copy problem [2] or on their perturbative [22, 23] and

OPE non-perturbative [24] descriptions. An unambiguous consensus from LQCD, after

all this work, pointed that F 2(q2)G(q2) → 0 when q → 0 (see, for instance, [2, 3]) and,

consequently, that the solution I is excluded provided that the finite-volume artefacts are

indeed under control. As a matter of the fact, finite-volume lattice simulations all agree

on a ghost propagator pretty close to the tree-level (αF ≃ 0) and a gluon propagator not

far from being a constant at vanishing momentum (αG ≃ 1).

Very recentely [5, 6], simulations on large volumes lattices (with a fair control over the

finite-volume lattice artifacts) yielded solutions for the ghost dressing function confirm-

ing that αF is indeed in the vicinity of 0. Let us now briefly comment about the ghost

propagator results from these two papers:

• The authors of ref. [5] simulated the ghost propagator in 564, 644, 724, 804 volumes

with an impressive control of the finite-size effects over a huge momentum range

from q2 ≃ 0.01 GeV2 to q2 ≃ 10 GeV2. They fit an IR exponent, αF = −0.174, that

appears to be in the vicinity of zero (but negative) and at least much larger that

the most frequently advocated value (≃ −0.5). The fit is however delicate because

the power behavior is dominant, if ever, only on a very small momentum domain.7

Indeed, it is adviseable to try a fitting function inspired from eq. (4.8). Moreover,

the numerical solution (type II), obtained in ref. [9], after a rescaling because of the

MOM renormalisation, describes strikingly well the lattice ghost propagator data

from ref. [5] over a large momentum window, from 0.05 GeV to 3GeV.

• The authors of ref. [6] computed an IR ghost propagator exponent, aG(= −αF ), for

several 3-dimensional and 4-dimensional lattice volumes (ranging from 1403 to 3203

and from 484 to 1284) and collected the results in their table 1. The values of αF

from that table are not only in the vicinity of zero (although being negative) but

they approach systematically zero when the volume increases. They fit the power

behaviour on a small domain with two or four momentum data.

7The fitted IR exponent is unstable, lying more and more in the vicinity of zero as the momentum

domain becomes smaller (see figure 2 of ref. [5]).
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In ref. [9], we showed that the k2 log (k2) term given by eq. (4.9) describes very well

the behaviour of a numerical solution of the GPDSE, eq. (2.4), for g̃2(µ = 1.5 GeV) = 29

(such a value corresponds to the best description of our ghost propagator lattice data) and

with a gluon dressing function taken from a lattice simulation (see figure 1 of ref. [9]).

We showed at the same time that including a logarithmic divergence changes appreciably

neither the deduced ghost propagator nor the conclusions about the infrared solutions.

In this same work we analysed in detail the behaviour of the numerical solutions of the

GPDSE as functions of g̃2(µ = 1.5 GeV) and discovered that a singular solution, behaving

as 1/q for small momentum (as the relation 2αF + αG = 0 requires), appeared only for the

specific value g̃2(µ = 1.5 GeV) = 33.198 . . . . . This solution belongs evidently to what is

referred to above as class I, with αF = −1/2 and does satisfy the relation 2αF + αG = 0.

Furthermore, the closer g̃2(µ2) to this critical value, the smaller the region near q = 0

where eq. (4.9) is valid.

6. Discussion and conclusions

Thus the present analytical considerations and the previous numerical study converge to-

wards a consistent description of the set of solutions of the ghost Dyson-Schwinger equa-

tions:

• A class of solutions where the ghost dressing function is finite and non zero at q2 = 0

(i.e. αF = 0), depending continuously on the coupling constant (or equivalently on

F (0)). Those solutions do not fulfill the relation 2αF + αG = 0 but appear, for

an appropriate value of the coupling, to be in very good agreement with the lattice

results.

• An exceptional solution, obtained for a critical value of the coupling is IR-divergent

with αF = −1/2. Contrary to the previous ones it satisfies 2αF + αG = 0 but is in

clear disagreement with the lattice data over a large range of momenta.

We have demonstrated that the discrepancy between LQCD results (implying unam-

biguously that αF ≃ 0 and αG ≃ 1) and the usual DSE solutions (2αF + αG = 0) can be

solved if the second type (II) of solutions is considered. The existence of this second class

besides the usual solution (type I) has been proven after carefully renormalising the GPDSE

and applying a subtraction procedure to deal with the remaining (after renormalisation)

UV singularity. This new solution yields a finite ghost dressing function at vanishing mo-

mentum while F 2(q2)G(q2) goes to a zero when q → 0 contrary to what occurs with type

I.

For this (type II) solution, an asymptotic formula of the ghost dressing function is

obtained that only depends on the IR one for the gluon which is taken as an ansatz in

this exercise and on the renormalized coupling. The numerical analysis of the GPDSE in

ref. [9] proves that the type II solution exists for any coupling below a given critical value

and that it verifies the asymptotic formula.

The WSTI involving the 3-gluon and the ghost-gluon vertex is particularly useful to

gain some knowledge about the ghost dressing function: by simply assuming the regularity
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of some of the tensorial components of the ghost-gluon vertex, one can conclude that the

ghost dressing function is finite and non zero at vanishing momentun. Then, WSTI with

the mentioned regularity assumption will discard the solution of type I.

Furthermore, LQCD data point to 2αF + αG ≃ 1 (certainly larger than 0). Would one

wish to reconcile these data with type I solution (2αF +αG = 0), very strong finite-volume

artifacts would be needed. Such a finite-size effect should strengthen the divergence of a

ghost propagator behaving at finite-volume like at tree-level and damp to zero the gluon

propagator. This is very doubtful considering that sizeable discrepancies between lattice

and solution I appear at momenta of the order of ≃ 0.3 GeV. On the contrary, very recent

LQCD data in large volumes [5, 6] show a fair stability as the volume increases and, if any,

a trend towards solution II (αF = 0). This is confirmed by the numerical analysis of ref. [9]

which proves that both type I and II solutions live at infinite volume for different values

of the coupling constant.

It is worth also pointing that some attempts to accomodate lattice data within DS

coupled equations [25] and within the Gribov-Zwanziger approach [16] led to solutions for

gluon and ghost propagators that behave pretty much like our solution II does.

Altogether we strongly believe that the question of the ghost propagator behaviour

at small momentum is essentially solved. The solution type II of GPDSE avoiding the

previous discrepancies, the three methods (DSE, WSTI and LQCD) strikingly converge to

the same result: a finite ghost dressing function at vanishing momentum. The

case of the gluon propagator needs further study.
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A. The Dyson-Schwinger equation as a Ward-Slavnov-Taylor identity

A very general method to derive Slavnov-Taylor identities consists in taking advantage of

the transformation properties of

eG(J) =

∫
D(A) detM exp

[
i

∫
d4x

(
L −

1

2α
(∂µAa

µ)(∂µAa
µ) + Ja

µAµ
a

)]
(A.1)

under gauge transformations (cf. [15]).

M is the Faddeev-Popov operator and the notation <, >J indicates that the source

term J has to be kept, although it will eventually be set to 0 (this is denoted in the following

by the suppression of the J subscript). Taking the derivative of the gauge transformed of

eq. (A.1) with respect to the gauge parameters leads to the general Slavov-Taylor equation

1

α
< (∂µAa

µ(x)) >J=<

∫
d4yJc

µ(y)Dcb
µ (y)F (2)ba(y, x) >J . (A.2)
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F (2)ba(y, x) is the ghost propagator and its presence here is simply due to its very definition

as the inverse of the Faddeev-Popov operator. If one derives eq. (A.2) with respect to Jd
ρ (z)

one gets:

1

α
< (∂µAa

µ(x))Ad
ρ(z) >J = < Ddb

ρ (z)F (2)ba(z, x) >J

+ <

∫
d4yJc

µ(y)Dcb
µ (y)F (2)ba(y, x)Ad

ρ(z) >J . (A.3)

A first consequence of this relation is the triviality of the longitudinal gluon propagator.

To see this, it suffices to derive both its sides with respect to zρ and to set J to zero. The

result is

1

α
< (∂µAa

µ(x))(∂ρA
d
ρ(z)) > = < ∂ρD

db
ρ (z)F (2)ba(z, x) >

= δad δ4(z − x). (A.4)

In order to derive the second line we have invoked the fact that ∂ρD
db
ρ (z), the Faddeev-

Popov operator, is the inverse of the ghost propagator F (2). Thus, in momentum space,

the general form of the gluon propagator for an arbitrary covariant gauge reads

G(2)ab
µν (q) = δab

[
G(2)(q2)

(
δµν −

qµqν

q2

)
+ α

qµqν

(q2)2

]
. (A.5)

Turning now back to eq. (A.3) and letting J go to zero we obtain

1

α
< (∂µAa

µ(x))Ad
ρ(z) >=< Ddb

ρ (z)F (2)ba(z, x) > (A.6)

which is nothing else than the GPDSE. Actually its l.h.s. involves only the longitudinal

part of the gluon propagator, that we have just seen to be trivial:

1

α
< (∂µAa

µ(x))Ad
ρ(z) >= ∂ρ�

−1(x, z); (A.7)

as for the r.h.s it can be rewritten as:

< Ddb
ρ (z)F (2)ba(z, x) >=< ∂ρF

(2)da(z, x) > +i < gfdebAe
ρ(z)F (2)ba(z, x) > . (A.8)

The 3-point gluon-ghost Green’s function can be expressed in terms of vertex functions

and propagators through

G̃(3)fgh
ρ (p, q, r) ≡ −i

∫
d4xd4td4zeipxeirzeiqt < Af

ρ(t)F (2)gh(z, x) > (A.9)

= g
F (p2)

p2

F (r2)

r2

[
G(q2)

q2

(
δρν −

qρqν

q2

)
+ α

qρqν

(q2)2

]
× (A.10)

×f fghΓ̃ν(p, r; q)(2π)4δ4(p + q + r)

Now, we Fourier-transform eq. (A.6), use eqs. (A.7)–(A.9) and obtain

kρ

k2
=

kρ

k2
F (k2) − gfdebf eba

∫
d4q

(2π)4
F (k2)

k2

F ((k + q)2)

(k + q)2
×

×

[
G(q2)

q2

(
δρν −

qρqν

q2

)
+ α

qρqν

(q2)2

]
Γ̃ν(k,−k − q; q), (A.11)
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where the usual form of GPDSE can be recovered from by multiplying with kρ and dividing

by F (k2), which leads to

F−1(k2) = 1 − gfdebf eba

∫
d4q

(2π)4
F ((k + q)2)

(k + q)2
×

×

[
G(q2)

q2

(
kν −

(qk)qν

q2

)
+ α

(qk)qν

(q2)2

]
Γ̃ν(k,−k − q; q). (A.12)

This is a general result, valid in any covariant gauge. Of course the α-depending (longitu-

dinal) term disappears in Landau gauge. Γ̃ν(k,−k − q; q) is related to the quantity, Γ̃µν ,

that was previously introduced in sections 2 and 4 through

Γ̃ν(k,−k − q; q) = −igkµΓ̃µν(k,−k − q; q)

and it is usually decomposed into Γ̃ν(k,−k − q; q) = g [kνH1(k, q) + qνH2(k, q)]. After

inserting this in eq. (A.12) and restricting to the Landau gauge case one finally obtains

F−1(k2) = 1 + g2Nc

∫
d4q

(2π)4
F ((k + q)2)

(k + q)2

[
G(q2)

q2

(
(qk)2

q2
− k2

)]
H1(k, q). (A.13)
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